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The possibility of the existence of a hydrodynamically invariant relation between individual parame-
ters of the process of convective drying is studied. The presence of a relation of this kind is a conse-
quence of the similarity of processes that is typical of regular modes of heat and mass transfer. 

Among the variety of interrelated processes of heat and mass transfer, of special interest are the cases
where a functional relation independent of the conditions of the process can be established a priori between
individual parameters. For example, Fig. 1 presents the dependence of the change in the temperature of a wet
body (peat slab) on its humidity in convective drying. The data are taken from [1]. We note that within the
range of air velocities from 0 to 12 m/sec the considered relation is a solid curve within the limits of the
experimental error, i.e., it is virtually invariant to the hydrodynamics of the process. We can give any number
of such examples.

Unfortunately, it is impossible to explain the presence of these facts on the basis of the known model
representations, which makes their use limited; nevertheless, the practical value of relations of this kind is of
no doubt. Therefore, we will try to reveal the reasons and find the conditions for the existence of an invariant
local relation between the temperature and the humidity of a dried body. We assume that there exists a func-
tional dependence that is unique for all points of the body (UFD) of the type ts = ϕ(u), which does not
depend on the intensity of the flows. The invariant relation in nongradient drying is an example [2].

The presence of a UFD can be treated as follows. The body surface serves as a generator of interre-
lated fields of temperature and humidity. Any combination of ts and u appears first on the surface, and then
it passes into the depth of the body with its previous values. Thus, to retain the UFD in displacement of the
fields, they must be tightly connected with each other, i.e., the velocities of displacement of the fields of
temperature and humidity must be the same: vt = vu.

The flows of moisture inside the body (the total flow j and that of vapor j1) are described by the
known equations [1]

j = − am (∇ u + δ∇ ts) ,   j1 = − am1 (∇ u + δ1∇ ts) . (1)

In the presence of the UFD, we have (the subscript 1 refers to the vapor phase): ts = ϕ(u); ∇ ts = ϕ′∇ u, where
ϕ′ = dts ⁄ du. Then

j = − am (1 + δϕ′) ∇ u ,   j1 = − am1 (1 + δ1ϕ
′) ∇ u . (2)

Since δ1, δ, and ϕ′ are the parameters of state, i.e., they are completely determined by the values of ts and u
at the considered point, they can be united into generalized (effective) coefficients of transfer

am
eff = am (1 + δϕ′) ,   am1

eff  = am1 (1 + δ1ϕ′) . (3)
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In the general case, the local rate of change of the humidity and temperature inside the body is described by
the known equations [1]

u′ = 
∂u

∂τ
 = ∇  [am (∇ u + δ∇ ts)] , (4)

ts
′  = 

∂ts
∂τ

 = a∇ 2ts + 
r

cs
 εu′ . (5)

With account for (3), instead of (4) we have the equation of mass transfer

u′ = 
∂u

∂τ
 = ∇  (am

eff∇ u) . (6)

Then by definition we have 

ϕ′ = 
∂ts

∂u
 = 

ts
′

u′
 .

(7)

Here the relations ∂x ⁄ ∂τ = vt = vu are used.
Then, with account for Eq. (5),

dts

du
 = 

a∇ 2uts + εr ⁄ csu
′

u′
 = 

a

u′
 ∇ 2ts + ε 

r

cs

 ,
(8)

∇ ts = ϕ′∇ u ;   ∇ 2ts = ϕ′′ (∇ u)2 + ϕ′∇ 2u , (9)

where ϕ′′  = d2ts ⁄ du2.
The local rate of drying at any point according to (6) and (9) is

Fig. 1. Mean temperature as a function of moisture content in drying of
a peat slab for different velocities of motion of the air: 1) w = 0; 2) 4.4
m/sec; 3) 3.8; 4) 8.35; 5) 11.6. t, oC.
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u′ = ∇  (am
eff∇ u) = 

∂am
eff

∂u
 (∇ u)2 + 

∂am
eff

∂ts
 ∇ ts∇ u + am

eff∇ 2u = (∇ u)2 




∂am
eff

∂u
 + ϕ′ 

∂am
eff

∂ts




 + am

eff∇ 2u . (10)

From the last equation we express ∇ 2u as

∇ 2u = 
u′

am
eff − 

(∇ u)2

am
eff  





∂am
eff

∂u
 + ϕ′ 

∂am
eff

∂ts




 . (11)

The flow of moisture at any point of the body is

j = − ρsam
eff∇ u ,   ∇ u = − j ⁄ (ρsam

eff) . (12)

Substituting (11) and (12) into (9) and (8), after transformations we have

dts

du
 = 

a

u′
 

j2

 ρsam
eff 




ϕ′′  − 

ϕ′

am
eff 





∂am
eff

∂u
 + ϕ′ 

∂am
eff

∂ts








 + 

a

am
eff ϕ

′ + ε 
r

cs

 . (13)

In the case of invariance, the right-hand side of (13) must not depend on the local rate of drying u′ and the
density of the moisture flow j. The latter is possible if the expression in brackets is equal to zero.

Now about the invariance of the coefficient of evaporation. In the general case, we have

ε = 
u1

′

u′
 = 

∇  (am1
eff∇ u)

u′
 = 

1

u′
 














∂am1
eff

∂u
 + ϕ′ 

∂am1
eff

∂ts




 (∇ u)2 + am1

eff ∇ 2u









 . (14)

Expressing ∇ u and ∇ 2u in terms of u′ and j and using (11) and (12), we have

ε = 
1

u′
 

j2

ρsam
eff

2 




∂am1
eff

∂u
 + ϕ′ 

∂am1
eff

∂ts
 − 

1

am
eff 





∂am
eff

∂u
 + ϕ′ 

∂am
eff

∂ts








 + 

am1
eff

am
eff  . (15)

The quantity ε can be an invariant if the expression in brackets in (15) is equal to zero. Simultaneous fulfill-
ment of this condition and the condition in (13) is possible only in the case where am

eff = const, am1
eff  = const,

and ϕ′′ = 0. Then ϕ′ = const, i.e., the dependence of ts on u in the presence of invariance must be linear.
From (13) it follows that am

eff = a at ε = 0. A small probability of this coincidence allows one to draw
a conclusion: the invariant relation between temperature and humidity can exist only in the case of internal
evaporation of moisture (when ε ≠ 0) and at ε = const.

It is the constancy of the coefficients of transfer that forms the basis of the majority of the known
solutions of the internal problem of heat and mass transfer; therefore it makes sense to analyze them. We
consider, for example, one of the solutions of system (4)−(5) for a plate with the boundary conditions of the
third kind [1, 3]:

t∗  =  ∑ 

n=1

∞

 ∑ 

i=1

2

 Cni cos νi µn X exp (− µn
2 Fo) ,

u∗  = 
1

εKo
  ∑ 

n=1

∞

 ∑ 

i=1

2

 Cni  (1 − νi
2) cos νi µn X exp (− µn

2 Fo) , (16)
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where

t∗  = 
tg − ts
tg − ts0

 ;   u∗  = 
u − ueq

u0 − ueq
 ;   X = 

x

R
 .

Here, for convenience of analysis, the expressions for t∗  and u∗  are somewhat modified and the terms involv-
ing P∗  are omitted, since, in moderate drying, the pressure inside the body does not change. The terms Cni, µn,
and νi are intricate complexes of internal and external parameters of drying that are determined by the corre-
sponding formulas [3].

Eliminating Fo from (16), we can, in principle, obtain the dependence of the dimensionless tempera-
ture on the humidity that in the general case, is not an invariant and, moreover, is not linear. Thus, the con-
stancy of the coefficients of transfer is not a sufficient condition of invariance. We try to consider the region
of regular modes when only one first term remains significant in the entire infinite series (16). Then, we have

u∗  ≈ f1 (µX) exp (− µ2Fo) ,   t∗  ≈ f2 (µX) exp (− µ2Fo) . (17)

Here f1 and f2 are the functions known from (16). We can substantially simplify the form of Eq. (17) if we
choose the moment of reckoning correctly. As the datum moment we take the moment when the body
reaches a critical humidity ucr, i.e., when the moisture content of the body surface decreases to a maximum
hygroscopic value um.h. The indicated technique can be used if the material has both periods of drying. Then,
at the end of the first period, the temperature at all points of the body is the same and equals tw; moreover,
of importance is the fact that in the first period a regular profile of moisture content is formed quickly, which
is caused by the high values of am in capillary-porous materials. Thus, for Fo = Focr we can write ts = tw,
u(X) = u0(X) (the initial internal regular profile of moisture content), and

ucr
∗  = 

u0 (X) − ueq

u0 − ueq
 = f1 (µX) exp (− µ2Fo) ,   tcr

∗  = 
tg − tw
tg − ts0

 = f2 (µX) exp (− µ2Focr) . (18)

We divide the corresponding expressions in (17) by (18):

E (X) = 
u∗

ucr
∗  = 

u0 − ueq

u0 (X) − ueq

 = exp (− µ2Fo∗ ) ,   T (X) = 
t∗

tcr
∗  = 

tg − ts

tg − tw
 = exp (− µ2Fo∗ ) , (19)

where Fo∗  = Fo − Focr.
Integrating (19) over the entire volume of the body, we have for the volume-mean values

T = 
tg − t

_
s

tg − tw
 = exp (− µ2Fo∗ ) ,   E = 

u
_
 − ueq

ucr − ueq
 = exp (− µ2Fo∗ ) . (20)

Hence immediately follows the sought linear relation between temperature and humidity in the form

T = E . (21)

Expression (21) can be treated as the first property of regular modes. Differentiating (20) with respect to
time, we have

du
_

dτ
 = − (ucr − ueq) exp (− µ2Fo∗ ) µ2am

 ⁄ R
2
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or with account for (20)

du
_

dτ
 = − (ucr − ueq) Eµ2am

 ⁄ R
2 . (22)

When E = 1, the rate of drying is equal to N (the rate of drying in the first period); hence µ2 =
NR2 ⁄ (ucr − ueq)/am and

− 
du

_

dτ
 = NE ,   − 

1
N

 
du
_

dτ
 = E . (23)

This is the second property of regular modes in which the rate of drying decreases linearly with E.
We can formulate the third property of regular modes, comparing (23) and (21):

T = − 
1
N

 
du
_

dτ
. (24)

According to it, the dimensionless temperature of the body coincides with the dimensionless rate of drying.
In fact, the coefficients of transfer and external conditions of the process are not constant, as a result

of which, strictly speaking, there must be no regular mode in the second period. As is known, an irregular
mode takes place with a sharp jumpwise change in the process conditions. If changes occur very smoothly
and slowly, for high values of am and a the internal fields of temperature and moisture content can rearrange
themselves according to the changing conditions so that the mode of transfer differs very little from regular.

Therefore, we will consider that the properties of regular modes hold in the second period and under
variable conditions. What changes must be made in expressions (21)−(24) in this case? Let, at a certain in-
stant of time, the product have running parameters ts and u

__
 that correspond to point B on the real temperature

curve CBA (Fig. 2). The straight line DA reflects an ideal regular process with a constant quantity µ equal to
its value at point B of the real curve. It is obvious that to each point of curve CBA there corresponds its own
regular straight line. The points of intersection of the considered lines and the horizontal tw = const determine
the values of the critical moisture contents ucr

reg and ucr, which in the general case do not coincide.
Expression (21) holds for ideal straight lines of the DA type; therefore, strictly speaking, it must in-

volve ucr
reg rather than ucr, i.e.,

Fig. 2. Derivation of (27).
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T = Ereg ,   Ereg = (u
_
 − ueq) ⁄ (ucr

reg − ueq) . (25)

The quantity ucr
reg in Fig. 2 depends on the position of point B and the shape of the considered curve, i.e.,

ucr
reg − ueq = f0 (u

_
 − ueq) . (26)

If there is a set of curves recorded in different modes rather than one curve, then dependence (26)
can be generalized to the entire set. Then we have a dependence that is unique for all curves that charac-
terizes the product studied: ucr

reg − ueq = f(u − ueq, ts − tw, tg − tw), or in dimensionless form

Ereg = ϕ (E, T) . (27)

On the other hand, if at any point of the real curve the mode of heat and mass transfer differs little from
regular, equality (25) must hold. Then, comparing (25) and (27), we have

T = ϕ (E, T) . (28)

Equation (28) expresses the single-valued dependence of T on E that can be written in explicit form:

T = F (E) . (29)

Thus, in the general case, the dependence of T on E, in contrast to (21), is nonlinear; moreover, by virtue of
the single-valuedness of the function F it does not depend on the mode of drying, i.e., it is an invariant for
the considered material which satisfies the regularity conditions. The form of the function F can easily be
found from experiments. Knowing F, one can find the temperature of the material at any point of the drying
chamber if at this point u

_
, tg, tw, ucr, and ueq are known. Consequently, it is not necessary to solve the equa-

tion of heat transfer (5).
Equation (29) expresses the property of similarity of heat and mass transfer processes in drying: the

curves of the dependence of the temperature of the material on its humidity in different modes are similar
and converge to one curve when dimensionless variables are used. We note that the similarity is not identical
to the invariance in the sense of a UFD, but for thin specimens we can neglect slight changes in the critical
humidity ucr in different hydrodynamic modes; then (29) will express an approximate dependence of ts on u

_
.

The latter is observed in Fig. 1.
We now refer to (23). Substituting the value of Ereg from (27) instead of E into it, we obtain with

account for (29):

− 
1
N

 
du
_

dτ
 = Φ (E) . (30)

Here, the similarity of the processes manifests itself: the dimensionless rate of drying is a single-valued func-
tion of the dimensionless humidity E. The similarity property makes it possible to represent the equation of
kinetics in the form of the product of two independent cofactors: the rate of drying in the first period N that
allows for the mode (including hydrodynamic) and the invariant Φ(E). The form of the latter is found by
differentiation of the experimental curve of kinetics. It is, however, of importance that Eq. (30) be obtained
by processing a series of experiments indicating the presence of similarity. Kinetic similarity is confirmed by
numerous experimental data (Fig. 3, data of [1−4]).

We note that expressions (29) and (30) are two sides of one phenomenon − similarity − and they are
inseparable, i.e., if the temperature similarity is observed, then there must obligatorily exist the kinetic simi-
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larity, and vice versa. The relation between them yields the third property of regular modes. Comparing (24)
with (29) and (30), we find

F (E) = Φ (E) , (31)

i.e., the temperature and kinetic invariants for one and the same product must be equal. Then, using the
known temperature curve, we can find the unknown curve of the rate of drying and vice versa. The property
indicated is also confirmed experimentally (Fig. 4, data of [4]). The small differences in the curves can be
explained by the different accuracy of determination of the temperature and the rate of drying, since the first
is measured directly and the second using the method of graphic differentiation.

When N = const, we can separate the variables in (30); after integration we have

  ∫ 
1

E

 
du

_

Φ (E)
 = − Nτ   or   E = F1 





Nτ
ucr − ueq




 . (32)

According to (32), all experimental data obtained in different modes are integrated into one self-similar curve
constructed in the coordinates E − Nτ ⁄ (ucr − ueq); the origin and the onset of the second period must coincide.
In this case, the function F1 is also an invariant; however, its practical value is bounded by the modes with
N = const.

The similarity of processes offers a researcher a serious instrument for calculation and analysis in the
form of invariants (29) and (30), which can be considered to be approximate integrals of system (4)−(5). The
advantage of these invariants over any analytical solutions lies in the automatic account for all nonlinearities,
including shrinkage, change in the internal structure of a body, etc. Here, it also becomes unnecessary to
experimentally determine variable coefficients of the system.

We should mention one more remarkable property of similarity: according to (29) and (30), the run-
ning temperature of the body and rate of drying do not depend on the prehistory of the process, i.e., they are
determined only by the running parameters of the process at a given instant of time. The indicated property
allows one to use similarity for calculation of processes with any smooth changes in external conditions.

Fig. 3. Similarity of kinetic curves for some materials: a) cloth: 1) τ =
80oC; 2) 60; 3) 40; b) clay: 1) 45; 2) 35; 3) 25; 4) 15; c) bread: 1) 125;
2) 100; 3) 80.

Fig. 4. Comparison of dimensionless temperature and kinetic curves of
drying of a condensed milk droplet.
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NOTATION

a and am, coefficients of thermal diffusivity and mass transfer, m2/sec; c, heat capacity; j, density of
the moisture flow; N, rate of drying in the first period, 1/sec; r, heat of moisture evaporation; R, radius of the
body; t, temperature; T, dimensionless temperature; u, moisture content, kg/kg; v, velocity of displacement of
the field; w, velocity of motion of the air; x, coordinate; δ, relative coefficient of thermal diffusion (dimen-
sionless); ε, coefficient of evaporation (dimensionless); ρ, density; τ, time; Fo = amτ ⁄ R2, Fourier number; Ko
= r(u0 − ueq)/[cs(tg − ts0)], Kossovich number. Subscripts and superscripts: g, gas; 0, at the inlet; eq, equilib-
rium; cr, critical, w, wet thermometer; m.h, maximum hygroscopic; reg, regular; s, solid phase; eff, effective.
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